Advanced Solvent Based Carbon Capture Technology Development

SOUTHERN

COMPANY

DE-FE0026590 Project Review Meeting August 9, 2016

Project Team

MHI PjM Process Design

PjM

SOUTHERN

Katherine Dombrowski AECOM PjM Karen Farmer

Steve Mascaro

NETL PJM

Project Background

- Awarded Phase 1 DOE NETL Carbon Capture Program: Large-Pilot Scale Post-Combustion
 - DE-FOA-0001190
 - 10/1/15 to 10/1/16
 - Techno-Economic Assessment, EH&S Study, Tech Gap Analysis and all other Phase 1 activities complete

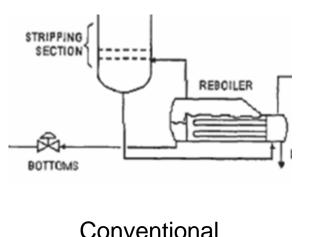
- Based on Phase 1 applications, DOE NETL will award Phase 2
 - Begins 10/1/16

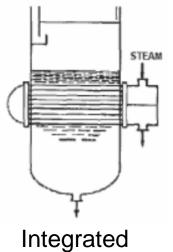
25-MW KM-CDR at Plant Barry

SOUTHER

 Previously tested improvements such as DOE-funded HES project (with MHIA and AECOM)

Project Objectives


 Evaluate technical and economic feasibility of fullscale installation of further improvements to the KM CDR Process[®]


SOUTHERN

• Resolve any operational problems with improvements at 25-MW size through testing

Built-in Reboiler

- Replace regenerator reboiler and stripper with integrated unit
- Welded-plate heat exchanger, designed for high condensation or evaporation duty, installed in the column
- Reduced capital and operating cost and footprint

Built-in Reboiler Testing Details

- Reboiler Performance Test
 - Confirm design performance
- Parametric Testing
 - Assess performance under a range of operating parameters

- Long Term Operation Test
 - Assess long term operability
- Internal Inspection
 - Inspect for potential damage or fouling

Particulate Matter (PM) Management

- Determine whether solvent purification can be eliminated
- Reduce capital and operating cost for the CCS system
- Turn off Solvent Purification System to mimic removal of the filtering process and allow PM levels in the solvent to build

SOUTHERN

• Determine maximum allowable particulate matter concentration at which solvent performance degrades

Particulate Matter Management Testing Details

- Baseline Test
 - Confirm baseline conditions and performance
- Higher PM Loading Test
 - Measure PM concentration and suspended solids (SS), and monitor conditions and performance without Solvent Purification System (SPS)

- Reclaiming Test
 - Operate reclaimer to remove and analyze SS
- Inspection
 - Conduct internal inspection potential damage, accumulation or fouling.

New Solvent A Testing

 Replace KS-1[™] solvent with improved amine-based New Solvent A developed by MHIA

```
Mono-ethanol Amine (MEA)

2 R-NH<sub>2</sub> + CO<sub>2</sub> ⇒ 2 R-NH<sub>3</sub><sup>+</sup> + R-NH-COO<sup>-</sup> (Dominant Reaction = 2:1)

R-NH<sub>2</sub> + CO<sub>2</sub> + H<sub>2</sub>O ⇒ R-NH<sub>3</sub><sup>+</sup> + HCO<sub>3</sub><sup>-</sup> (Subordinate reaction = 1:1)
Sterically Hindered (KS-1, New Solvent A)

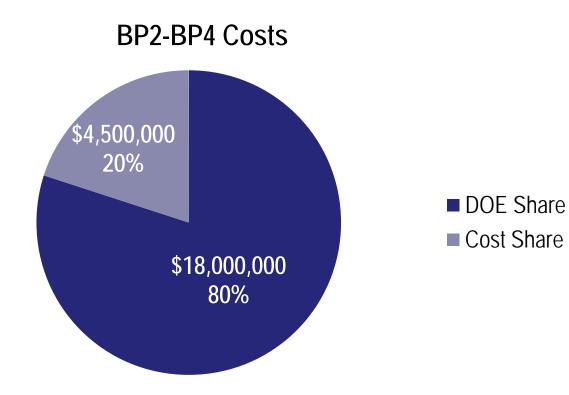
2 R-NH<sub>2</sub> + CO<sub>2</sub> ⇒ 2 R-NH<sub>3</sub><sup>+</sup> + R-NH-COO<sup>-</sup> (Dominant Reaction = 2:1)

R-NH<sub>2</sub> + CO<sub>2</sub> + H<sub>2</sub>O ⇒ R-NH<sub>3</sub><sup>+</sup> + HCO<sub>3</sub><sup>-</sup> (Subordinate reaction = 1:1)
```

Advantages of New Solvent A

Comparison of Solvent Characteristics							
	MEA	KS-1™	New Solvent A				
Steam Consumption	1	0.68	0.63				
Solvent Degradation	1	0.1	0.05				
Solvent Emission	1	0.1	0.04				

- New Solvent A regeneration steam consumption
 - Reduced 5% from KS-1TM
 - Reduced 37% from MEA
- Steam consumption savings significantly outweigh cost increases due to higher solvent circulation
- New Solvent A potentially more tolerant to impurities

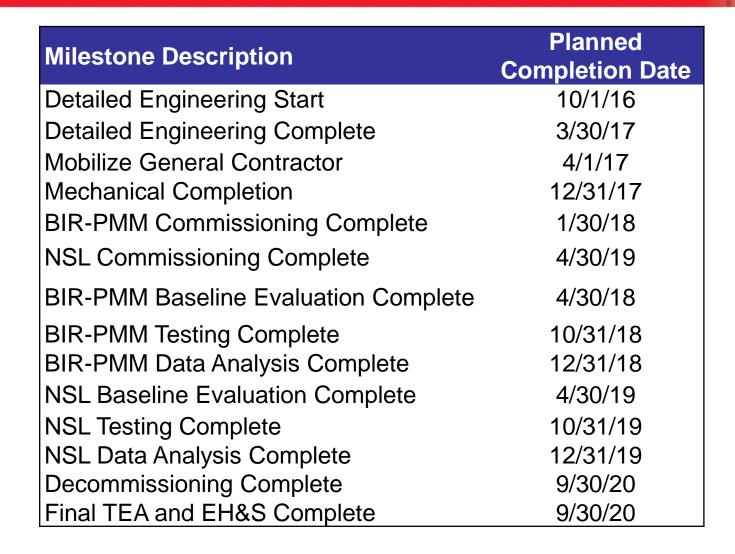

New Solvent A Testing Details

- Baseline Test
 - Confirm baseline performance of New Solvent A
- Optimization Test
 - Vary operating parameters to verify performance
- Long Term Operation Test
 - Confirm performance and verify solvent degradation rate
- Reclaiming Test
 - Perform reclaiming operation to confirm operability and stability.

- Inspection
 - Conduct internal inspection for potential corrosion

Project Structure: Phase 2 Budget

Phase 2 (BP2-BP4) will last 4 years (10/1/16-9/30/20)


Phase 2 Schedule

SOUTHERN

All Phase 1 activities complete Engineering pending Phase 2 award September 2016

Phase 2 Milestones

3/31/17	Engineering: Completion of engineering with cost estimate for large-scale pilot program within budget.
12/31/17	Procurement and Construction: Completed within target budget and adhering to desired design.
12/31/18	 Built-In-Reboiler Performance: Measured initial heat transfer efficiency and steam consumption matches or is less than non-integrated reboiler. Particulate Matter Management Evaluation: Ability to remove solvent filters confirmed and maximum PM level established.

Phase 2 Success Criteria

12/31/19 New Solvent Performance: Confirm reduction in regeneration steam consumption (5% over KS-1[™] and 37% over MEA).
 New Solvent Long Term Operation: Long-term stability of new solvent with regard to degradation.

SOUTHERN

9/30/20 Overall Cost Performance: Revised final TEA shows implementation of 3 improvements with heat integration achieves \$54.8/tonne CO2 and 12.7% reduction in COE Inspection: No significant corrosion, scaling or impurity buildup due to testing

Phase 1 Technology Gap Analysis

• Analyzed technical gaps and determined that there were no major gaps remaining prior to testing at 25-MW scale

ACC Technology Component	Technology Readiness Level	Evidence
Built-in Reboiler	6	Commercially available; tested at 2.5-MW scale for amine-based CO ₂ removal on coal-fired flue gas
Particulate Matter Management	6-7	Long-term testing of effects of PM concentration with CAFS has been completed at 25-MW pilot; PM concentration will be increased gradually without filtering; lab testing is not applicable to this component
New Solvent A	5	Tested at 0.1-MW scale on natural-gas fired flue gas for CO ₂ removal

Phase 1 Techno-Economic Assessment

• Phase 1 updates to the technology economics (2011 dollars)

	Supercritical PC w MEA CCS (Case 12)	Supercritical PC w KM- CDR CCS with HES	Supercritical PC w KM-CDR CCS with HES, BIR, PMM and NSL	Supercritical PC w KM- CDR CCS with HES, BIR, PMM and NSL + Aux. Turbine	DOE Targets
COE (mils/kW)	147.3	133.7	130.6	128.6	103.1 by 2030 (-30% from Case 12)
Cost of CO ₂ capture (\$/tonne)	66.4	58.8	56.0	54.8	40.0 by 2025 30.0 by 2030

Summary

 Completed Phase 1 Techno-Economic Assessment, EH&S Study, Tech Gap Analysis and updated project budget

- Phase 2 Engineering will begin pending Phase 2 award
- Phase 2 complete by end of September 2020

Questions?

